24/7 Pet Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    Montgomery modular multiplication relies on a special representation of numbers called Montgomery form. The algorithm uses the Montgomery forms of a and b to efficiently compute the Montgomery form of ab mod N. The efficiency comes from avoiding expensive division operations. Classical modular multiplication reduces the double-width product ab ...

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n .

  4. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Zn; it has φ ( n) elements, φ being Euler's totient function, and is denoted as U ( n ...

  5. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The Schönhage–Strassen algorithm is based on the fast Fourier transform (FFT) method of integer multiplication. This figure demonstrates multiplying 1234 × 5678 = 7006652 using the simple FFT method. Base 10 is used in place of base 2 w for illustrative purposes. The Schönhage–Strassen algorithm is an asymptotically fast multiplication ...

  6. Integer - Wikipedia

    en.wikipedia.org/wiki/Integer

    The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property , namely to be an initial object in the category of rings , characterizes the ring Z {\displaystyle \mathbb {Z} } .

  7. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    A Gaussian integer is either the zero, one of the four units (±1, ± i ), a Gaussian prime or composite. The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime. The factorizations take the form of an optional unit multiplied by integer ...

  8. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Numerous algorithms are known and there has been much research into the topic. The oldest and simplest method, known since antiquity as long multiplication or grade-school ...

  9. Hypercomplex number - Wikipedia

    en.wikipedia.org/wiki/Hypercomplex_number

    Hypercomplex number. In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers. The study of hypercomplex numbers in the late 19th century forms the basis of modern group representation theory.