24/7 Pet Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Prime gap - Wikipedia

    en.wikipedia.org/wiki/Prime_gap

    A prime gap is the difference between two successive prime numbers. The n -th prime gap, denoted gn or g ( pn) is the difference between the ( n + 1)-st and the n -th prime numbers, i.e. We have g1 = 1, g2 = g3 = 2, and g4 = 4. The sequence ( gn) of prime gaps has been extensively studied; however, many questions and conjectures remain unanswered.

  3. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    A simple formula is. for positive integer , where is the floor function, which rounds down to the nearest integer. By Wilson's theorem, is prime if and only if . Thus, when is prime, the first factor in the product becomes one, and the formula produces the prime number . But when is not prime, the first factor becomes zero and the formula ...

  4. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    For example, among the positive integers of at most 1000 digits, about one in 2300 is prime (log(10 1000) ≈ 2302.6), whereas among positive integers of at most 2000 digits, about one in 4600 is prime (log(10 2000) ≈ 4605.2). In other words, the average gap between consecutive prime numbers among the first N integers is roughly log(N). [3]

  5. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a ...

  6. Reciprocals of primes - Wikipedia

    en.wikipedia.org/wiki/Reciprocals_of_primes

    The reciprocals of prime numbers have been of interest to mathematicians for various reasons. They do not have a finite sum, as Leonhard Euler proved in 1737. Like rational numbers, the reciprocals of primes have repeating decimal representations. In his later years, George Salmon (1819–1904) concerned himself with the repeating periods of ...

  7. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by for . According to the Green–Tao theorem, there exist arbitrarily long arithmetic progressions in the sequence of primes.

  8. Largest known prime number - Wikipedia

    en.wikipedia.org/wiki/Largest_known_prime_number

    The largest known prime number is 2 82,589,933 − 1, a number which has 24,862,048 digits when written in base 10. It was found via a computer volunteered by Patrick Laroche of the Great Internet Mersenne Prime Search (GIMPS) in 2018. [1] A 2020 plot of the number of digits in the largest known prime by year, since the electronic computer.

  9. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    The prime number theorem asserts that an integer m selected at random has roughly a ⁠ 1 / ln m ⁠ chance of being prime. Thus if n is a large even integer and m is a number between 3 and ⁠ n / 2 ⁠ , then one might expect the probability of m and n − m simultaneously being prime to be ⁠ 1 / ln m ln( n − m ) ⁠ .